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ABSTRACT

This  study  focuses  on  the  statistical  modeling  of  the  Power  Dissipation  Index  (PDI)  and 

Accumulated Cyclone Energy (ACE) for the North Atlantic basin over the period 1949-2008, which 

are metrics routinely used to assess tropical storm activity. To describe the variability exhibited by 

the data, four different statistical  distributions are considered (gamma, Gumbel, lognormal, and 

Weibull),  and tropical  Atlantic and tropical  mean sea surface temperatures  (SSTs) are  used as 

predictors. Model selection, both in terms of significant covariates and their functional relation to 

the parameters of the statistical distribution, is performed using two different penalty criteria. Two 

different  SST  data  sets  are  considered  (UK  Met  Offices  HadISSTv1  and  NOAAs  Extended 

Reconstructed ERSSTv3b) to examine the sensitivity of the results to the input data.

The statistical models presented in this study are able to describe remarkably well the variability 

in  the  observations.  Both  tropical  Atlantic  and  tropical  mean  SSTs  are  significant  predictors, 

independently of the SST input  data,  penalty criterion,  and tropical  storm activity metric.  The 

application of these models to centennial reconstructions and seasonal forecasting is illustrated.
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1. Introduction

By convolving intensity, duration and frequency, the seasonally integrated Power Dissipation 

Index (PDI; Emanuel 2005, 2007) and the Accumulated Cyclone Energy (ACE; e.g., Bell et al. 

2000; Camargo and Sobel 2005; Bell and Chelliah 2006) are concise metrics used to summarize the 

activity of a tropical storm season. Both of these measures are computed taking into account the life 

time of storms and the maximum sustained wind speed. The main difference between PDI and ACE 

is that the former is computed using the velocities cubed, while the latter the velocities squared. 

These metrics have been used in different studies examining past tropical storm activity as well as 

possible changes in climate warming scenarios. 

Emanuel (2005) found a strong correlation between the North Atlantic PDI to tropical Atlantic 

sea surface temperature (SST) (r2=0.65). Swanson (2008) showed how comparable results could be 

obtained using relative SST (difference between tropical Atlantic and tropical mean SSTs). Vecchi 

et al. (2008) explores the implications of Swanson (2008) for attribution of past and projections of 

future PDI changes, and also showed how describing PDI as a linear function of relative SST would 

provide a better agreement with dynamical modeling results than using tropical Atlantic SST for 

climate change scenarios. Klotzbach (2006) found a significant increasing linear trend in North 

Atlantic ACE over the period 1986-2005 (see also Wu et al. (2008)), and a statistically significant 

correlation between North Atlantic SST and ACE.

In studies examining the relation between these indexes and climate-related predictors, linear 

regression is generally used after transforming the data to account for their skewness (e.g., Saunders 

and Lea 2005; Vecchi et al. 2008). Mestre and Hallegatte (2009) focused on the statistical modeling 

of the largest PDI each year. Despite their wide use, detailed statistical modeling of the PDI and 

ACE indexes  is  still  lacking.  In  particular,  outstanding questions  revolve around the statistical 

distribution of these metrics, as well as the dependence of the parameters of this distribution on 
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climate-related indices. An improved understanding of the physical mechanisms controlling PDI 

and ACE could provide a foundation for improved capability of seasonal forecast of tropical storm 

activity and better insight into possible interannual to centennial changes in tropical storm activity 

in response to climate variability and change. The topic of this study is, therefore, the statistical 

modeling of these two metrics in terms of climate indexes.

2. Generalized Additive Model in Location, Scale and Shape (GAMLSS)

Statistical modeling of the PDI and ACE over the period 1949-2008 for the North Atlantic basin 

is performed using the Generalized Additive Model in Location, Scale, and Shape (GAMLSS), 

proposed and developed by Rigby and Stasinopoulos (2005). The advantage of the GAMLSS with 

respect  to  other  models,  such  as  Generalized  Linear  Model,  Generalized  Additive  Model, 

Generalized Linear  Mixed Model,  is  that  we are not  restricted in using distributions from the 

exponential family (e.g., Gaussian, exponential) but we can fit using a distribution from a more 

general set of distribution functions (e.g. highly skewed and/or kurtortic continuous and discrete 

distributions).  This  statistical  framework  was  already  successfully  used  to  describe  other 

hydrometeorological variables (Villarini et al. 2009a, 2009b, 2010a). Because these two metrics are 

continuous and can only have positive values, we explore these four two-parameter distributions: 

gamma, Gumbel, lognormal, and Weibull. We model the parameters of these distributions as a 

linear or nonlinear (via cubic splines) function of covariates. Following Swanson (2008) and Vecchi 

et al. (2008), we focus on tropical Atlantic (SSTAtl) and mean tropical (SSTtrop) SSTs as possible 

covariates. Two different input data sets are considered: UK Met Offices HadISSTv1 (Rayner et al. 

2003) and NOAAs Extended Reconstructed SST (ERSSTv3b; Smith et al. 2008), and averaged over 

the period June-November. The use of two data sets provides information about the sensitivity of 

our results to uncertainties in SST reconstructions. The tropical Atlantic SST anomalies (SSTAtl) are 

4

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

1



computed for over 10N-25N and 80W-20W, while the mean tropical SST (SSTTrop) over the global 

tropics (30S-30N). 

Model selection, both in terms of predictors and their functional relation to the parameters of 

these distributions, is performed using a stepwise method penalizing with respect to both the Akaike 

Information Criterion (AIC; Akaike 1974) and the Schwarz Bayesian Criterion (SBC; Schwarz 

1978). Quality of the fit is assessed by comparing the first four statistical moments of (normalized 

quantile) residuals against a standard normal distribution, together with their Filliben correlation 

coefficient (Filliben 1975), and by visual examination of the residuals’ plots (e.g., qq-plot, worm 

plot;  van  Buuren  and  Fredriks  2001;  Stasinopoulos  and  Rigby  2007).  For  a  comprehensive 

discussion  about  the  GAMLSS,  the  reader  is  pointed  to  Rigby and  Stasinopoulos  (2005)  and 

Stasinopoulos and Rigby (2007). All the calculations are performed in  R (R Development Core 

Team 2008) using the freely available gamlss package (Stasinopoulos et al. 2007).

3. Results

Modeling  of  the  PDI  and  ACE in  terms  of  tropical  Atlantic  and  tropical  mean  SSTs  is 

performed using the GAMLSS. Focusing first on PDI, Figure 1 shows the results obtained using 

AIC as penalty criterion (see Figure S1 for results using SBC). Summary of the models’ fit is  

presented in Table 1.  Independently of the penalty criterion and SST input  data,  both tropical 

Atlantic and tropical mean SSTs are always retained by the model as significant predictors (see also 

Villarini et al. (2010b)). Moreover, the former has a positive coefficient, while the latter a negative 

one.  This  is  in  agreement  with  the  results  in  Swanson  (2008)  and Vecchi  et  al.  (2008).  The 

magnitude of these coefficients is larger for tropical Atlantic, suggesting that uniform SST warming 

should lead to tropical storm seasons with larger PDI. The ratio of the coefficients linking SSTTROP 

and SSTMDR to the mean is between 0.77-0.85, in close agreement with the linear regression results 
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of Swanson (2008). These models describe very well the variability exhibited by the data, with 

alternating periods of increased and decreased activity. The model fit diagnostics (Figures 1 and S1, 

right panels; Table 1) support the choice of these models. When using ERSSTv3b data for modeling 

PDI, independently of the penalty criterion the gamma distribution with the logarithm of the  µ 

parameter linear function of both tropical  Atlantic and tropical mean SSTs is  selected as final 

model. The picture is slightly different when using HadISSTv1 data. The Weibull distribution with 

log(µ) depending on both of the predictors by means of a cubic spline is selected when penalizing 

with respect to AIC. On the other hand, a gamma distribution with log(µ) depending linearly on 

both predictors is selected when penalizing with respect to SBC. 

The results and conclusions for the ACE are similar to what found for the PDI (Figures 2 and 

S2; Table 2). Both tropical Atlantic and tropical mean SSTs are included in the final models, with 

the coefficient  of the former (latter)  having a positive (negative)  sign (see also Villarini  et  al. 

(2010b)). The results using ERSSTv3b data are the same independently of the penalty criterion, 

with the gamma distribution being the selected distribution with the log(µ) depending linearly on 

both predictors. The results for the HadISSTv1 data, both in terms of parametric distribution and 

functional relation of its parameters on the covariates, depend on the penalty criterion. When using 

AIC, the data can be described by a Weibull distribution with the µ parameter depending on the 

SST predictors by means of a cubic spline (via a logarithmic link function). The gamma distribution 

with log(µ) depending linearly on both predictors is selected when penalizing with respect to SBC. 

These models are able to describe remarkably well the variability exhibited by the data, as also 

supported by the fit diagnostics (Figures 2 and S2, right panels; Table 2). Differently from the PDI 

results, the values of the coefficients of the two predictors have similar magnitude and opposite 

sign, suggesting that a uniform increase in SST would lead to little change in seasonal ACE, with 

the remote warming offsetting the Atlantic warming.
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4. Discussion and Conclusions

In this study we have focused on the Power Dissipation Index (PDI) and Accumulated Cyclone 

Energy (ACE) for North Atlantic tropical storms over the period 1949-2008. We have examined the 

dependence of these two metrics on tropical Atlantic and tropical mean SSTs. Statistical modeling 

was performed using the GAMLSS. Two different penalty criteria (AIC and SBC) were selected, as 

well as two different SST input data sets (ERSSTv3b and HadISSTv1). 

Our results indicate that both tropical Atlantic and tropical mean SSTs are significant covariates 

in  describing  the  variability  of  PDI  and  ACE  for  North  Atlantic  tropical  storms,  providing 

additional evidence to the importance of relative SST on the tropical storm activity. For both PDI 

and ACE, the coefficient of tropical Atlantic SST had a positive sign, while the coefficient for 

tropical mean SST was negative. For PDI the coefficient for the Atlantic SST was larger than for 

the tropical SST, suggesting that a uniform increase in SST in a warmer climate would result in an 

increase in PDI. For the ACE the magnitude of the two coefficients were much more similar, not 

suggesting an increase in ACE values under uniform SST warming. Because PDI depends on the 

wind speed to the third power, while ACE to the second power, an interpretation of the differences 

in the relative amplitudes of the SSTAtl and SSTtrop coefficients of the models for PDI and ACE is 

that the response of intensity of the most intense storms and overall tropical storm frequency to 

uniform warming is different. This is in qualitative agreement with the dynamical modeling results 

indicating that the intensity and frequency response of Atlantic tropical cyclones to global warming 

can differ (Emanuel et al. 2008, Knutson et al. 2008, Bender et al. 2010, and Zhao and Held 2010). 

The statistical models provide a framework with which to reconstruct the PDI and ACE time 

series  prior  to  1949  using  reconstructed  SST  time  series  (e.g.,  Figure  3,  top  panel).  These 

reconstructions could provide information about the North Atlantic tropical storm activity in the 

past, placing recent variations on a larger context. The centennial reconstruction of PDI indicates 
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periods of enhanced and reduced variability over the past 130 years on a variety of time scales. 

Thus,  the  PDI  reconstruction  indicates  that  there  have  been  periods  before  1949  that  were 

comparably active to the post-1995 era of heightened activity. Future work will explore modifying 

the methodology of Mann et al. (2009) using these models to build multi-centennial reconstructions 

of PDI and ACE.

Apart  from information  about  possible  changes  in  tropical  storm activity  from decadal  to 

centennial  climate  variations  and  change,  another  application  of  our  models  is  related  to  the 

seasonal forecast of PDI and ACE (e.g., Camargo et al. 2007; Klotzbach 2007; Klotzbach and Gray 

2009; Vecchi et al. 2011). For instance, the NOAA Climate Prediction Center (CPC) uses the ACE 

value to  classify a  North Atlantic  tropical  storm season into above-,  near-,  and below-normal. 

Recently, Vecchi et al. (2011) proposed a hybrid statistical-dynamical model that can be used to 

forecast hurricane counts starting from September of the previous year. As an example, we have 

“forecasted” the PDI distribution using a 10-member June-November tropical Atlantic and tropical 

mean SST forecasts initialized in January. The correlation coefficient between observations and the 

median of the PDI distribution over the period 1982-2009 is 0.77, with a RMSE of 1.51×1011 m3s-2 

and a MAE of 1.11×1011 m3s-2 (Figure 3, bottom panel). Even though we have forecasted the period 

used for model fitting, results obtained from leave-one-out cross validation support the predictive 

capability of this model (compared to the full model, the correlation coefficient is 0.51 versus 0.58, 

the  RMSE is  1.39×1011 m3s-2 versus  1.32×1011 m3s-2,  and  the  MAE of  1.03×1011 m3s-2 versus 

0.98×1011 m3s-2;  these  results  are  for  the  period  1949-2008).  These  preliminary  results  are 

encouraging, and in a future study we will examine the applicability of our statistical models to the 

seasonal forecast of PDI and ACE, in a fashion similar to what described in Vecchi et al. (2011).

One element that requires further discussion is the fact that tropical Atlantic and tropical mean 

SSTs are correlated (the correlation between these two predictors is equal to 0.73 for HadISSTv1 
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and 0.78 for ERSSTv3b). At the onset, it is worth clarifying that, even though these values may 

appear large, they are not nearly as large as those in studies from other disciplines (e.g., Burnham 

and Anderson 2004; Stasinopoulos and Rigby 2007). As a rule of thumb, Burnham and Anderson 

(2002) suggested to keep all the predictors unless the correlation coefficient is extremely high, with 

|0.95| as a cutoff value for dropping a covariate. To assess whether collinearity may have affected 

our results, we use the variance inflation factor (VIF). This is a diagnostic tool commonly used to 

evaluate the impact of collinearity, by quantifying the impact of the correlation among predictors on 

inflating the sampling variance of an estimated regression coefficient. For the gamma models, we 

compute the  VIF using the  vif function in  the  Design package (Harrell  Jr  2009)  in  R (R 

Development  Core  Team  2008),  in  which  the  method  described  in  Davis  et  al.  (1986)  is 

implemented  (see  also  Wax (1992)).  A VIF value  of  10  is  generally  used  to  decide  whether 

collinearity is high (e.g.,  Davis et al. 1986, O’Brien 2007) and this is the cutoff value we use. 

Independently of the SST input data and tropical storm activity metric, the VIF values are smaller 

than 3, indicating that the impact of collinearity does not significantly affect the results of this study 

(see also discussion in Villarini et al. (2011)). 
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LIST OF FIGURES

FIG. 1. Left panels: Modeling of the Power Dissipation Index (PDI) with a gamma distribution (top 

panel) and Weibull distribution (bottom panel) with parameters depending on tropical Atlantic and 

tropical mean SSTs. The results in the top panel are based on the ERSSTv3b data, while those on 

the bottom on the HadISST data. Model selection is performed with respect to AIC. The dots are 

observations; the white line represents the 50th percentile, the light grey area the region between the 

25th and 75th percentiles, and the dark grey area the region between the 5th and 95th percentiles. In the 

top panel, “GA” stands for gamma distribution; in the bottom panel, “cs” stands for cubic spline 

and “WEI” for Weibull distribution. Right panels: Worm plots used to assess the quality of the fit.

FIG.  2.  Left  panels:  Modeling  of  the  Accumulated  Cyclone  Energy  (ACE)  with  a  gamma 

distribution (top panel)  and Weibull  distribution (bottom panel)  with parameters  depending on 

tropical Atlantic and tropical mean SSTs. The results in the top panel are based on the ERSSTv3b 

data, while those on the bottom on the HadISST data. Model selection is performed with respect to 

AIC. The dots are observations; the white line represents the 50th percentile, the light grey area the 

region between the 25th and 75th percentiles, and the dark grey area the region between the 5th and 

95th percentiles. In the top panel, “GA” stands for gamma distribution; in the bottom panel, “cs” 

stands for cubic spline and “WEI” for Weibull distribution. Right panels: Worm plots used to assess 

the quality of the fit.

FIG. 3. Top panel: Reconstruction of the PDI from 1878 using the gamma model obtained from the 

ERSSTv3b data. Bottom panel: Forecast of PDI over the period 1949-2010 using a 10-member 

June-November SST forecast initialized in January. In both of the panels, the dots are observations; 

the white line represents the 50th percentile, the light grey area the region between the 25th and 75th 

percentiles, and the dark grey area the region between the 5 th and 95th percentiles. The solid black 

line in the top panel represents the 5-year running mean of the median.
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FIG. 1. Left panels: Modeling of the Power Dissipation Index (PDI) with a gamma distribution (top 

panel) and Weibull distribution (bottom panel) with parameters depending on tropical Atlantic and 

tropical mean SSTs. The results in the top panel are based on the ERSSTv3b data, while those on 

the bottom on the HadISST data. Model selection is performed with respect to AIC. The dots are 

observations; the white line represents the 50th percentile, the light grey area the region between the 

25th and 75th percentiles, and the dark grey area the region between the 5th and 95th percentiles. In the 

top panel, “GA” stands for gamma distribution; in the bottom panel, “cs” stands for cubic spline 

and “WEI” for Weibull distribution. Right panels: Worm plots used to assess the quality of the fit.
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FIG.  2.  Left  panels:  Modeling  of  the  Accumulated  Cyclone  Energy  (ACE)  with  a  gamma 

distribution (top panel)  and Weibull  distribution (bottom panel)  with parameters  depending on 

tropical Atlantic and tropical mean SSTs. The results in the top panel are based on the ERSSTv3b 

data, while those on the bottom on the HadISST data. Model selection is performed with respect to 

AIC. The dots are observations; the white line represents the 50th percentile, the light grey area the 

region between the 25th and 75th percentiles, and the dark grey area the region between the 5th and 

95th percentiles. In the top panel, “GA” stands for gamma distribution; in the bottom panel, “cs” 

stands for cubic spline and “WEI” for Weibull distribution. Right panels: Worm plots used to assess 

the quality of the fit.
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FIG. 3. Top panel: Reconstruction of the PDI from 1878 using the gamma model obtained from the 

ERSSTv3b data. Bottom panel: Forecast of PDI over the period 1949-2010 using a 10-member 

June-November SST forecast initialized in January. In both of the panels, the dots are observations; 
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the white line represents the 50th percentile, the light grey area the region between the 25th and 75th 

percentiles, and the dark grey area the region between the 5 th and 95th percentiles. The solid black 

line in the top panel represents the 5-year running mean of the median.

19

1

2

3

1



LIST OF TABLES

TABLE 1. Summary statistics for the modeling of the Power Dissipation Index (PDI) using tropical 

Atlantic and tropical mean SSTs as covariate. The first value is the point estimate, while the one in 

parentheses is the standard error. In each cell, the values in the first (second) row refer to the model 

selected with respect to AIC (SBC). When ‘‘cs’’ is present, it means that the dependence of the 

parameters on that covariate is by means of a cubic spline (otherwise, linear dependence is implied).

TABLE 2. Same as Table 1 but for the Accumulated Cyclone Energy (ACE).
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TABLE 1. Summary statistics for the modeling of the Power Dissipation Index (PDI) using tropical 

Atlantic and tropical mean SSTs as covariate. The first value is the point estimate, while the one in 

parentheses is the standard error. In each cell, the values in the first (second) row refer to the model 

selected with respect to AIC (SBC). When ‘‘cs’’ is present, it means that the dependence of the 

parameters on that covariate is by means of a cubic spline (otherwise, linear dependence is implied). 

PDI ERSSTv3b HadISSTv1
Distribution Gamma

Gamma
Weibull
Gamma

Intercept 0.79 (0.09)
0.79 (0.09)

0.88(0.08)
0.78 (0.08)

log(µ):SSTAtl 1.85 (0.35)
1.85 (0.35)

1.77 (0.32; cs)
1.78 (0.32)

log(µ):SSTtrop -1.57 (0.48)
-1.57 (0.48)

-1.41 (0.46; cs)
-1.37 (0.46)

log(σ) -0.62 (0.09)
-0.62 (0.09)

0.85 (0.10)
-0.63 (0.09)

Mean (residuals) 0.00
0.00

0.00
0.00

Variance (residuals) 1.02
1.02

1.00
1.02

Skewness (residuals) -0.04
-0.04

0.08
-0.16

Kurtosis (residuals) 3.12
3.12

2.79
2.83

Filliben (residuals) 0.995
0.995

0.995
0.995

AIC 192.9
192.9

189.6
191.4

SBC 201.3
201.3

210.5
199.8
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TABLE 2. Same as Table 1 but for the Accumulated Cyclone Energy (ACE).

ACE ERSSTv3b HadISSTv1
Distribution Gamma

Gamma
Weibull
Gamma

Intercept -0.05 (0.08)
-0.05 (0.08)

0.03 (0.08)
-0.07 (0.07)

log(µ):SSTAtl 1.83 (0.33)
1.83 (0.33)

1.74 (0.29; cs)
1.78 (0.29)

log(µ):SSTtrop -1.84 (0.43)
-1.84 (0.43)

-1.59 (0.41; cs)
-1.66 (0.41)

log(σ) -0.71 (0.09)
-0.71 (0.09)

0.96 (0.10)
-0.73 (0.09)

Mean (residuals) 0.00
0.00

0.00
0.00

Variance (residuals) 1.02
1.02

1.01
1.02

Skewness (residuals) -0.03
-0.03

0.08
-0.18

Kurtosis (residuals) 2.90
2.90

2.72
2.78

Filliben (residuals) 0.995
0.995

0.996
0.995

AIC 77.8
77.8

72.8
74.4

SBC 86.1
86.1

93.7
82.7

22

1
2

3

1


	1. Introduction
	2. Generalized Additive Model in Location, Scale and Shape (GAMLSS)
	3. Results
	4. Discussion and Conclusions

